Variation in the UCP2-UCP3 gene cluster predicts the development of type 2 diabetes in healthy middle-aged men.
نویسندگان
چکیده
The impact of the UCP2 -866G>A and UCP3 -55C>T variants on prospective risk of type 2 diabetes was examined over 15 years in 2,936 healthy middle-aged men (mean age 56 years). Conversion to diabetes (n = 169) was associated with higher BMI, blood pressure, cholesterol, triglycerides and C-reactive protein. The hazard ratio (HR) for diabetes of a BMI >30 kg/m(2) was 3.96 (95% CI 2.87-5.47). Homozygosity for the UCP2A or UCP3T alleles accelerated the onset of diabetes, with significant differences in risk of diabetes at 10 years (HR [95% CI] UCP2AA vs. GA+GG 1.94 [1.18-3.19], P = 0.009; UCP3TT vs. CC+ CT 2.06 [1.06-3.99], P = 0.03) but less so at 15 years (UCP2AA 1.42 [0.92-2.19], P = 0.1; UCP3TT 1.57 [0.87-2.04], P = 0.13). Men who were homozygous for both UCP2AA and UCP3TT (1.5% of men) had a risk for diabetes at 10 years of 4.20 (1.70-10.37), P = 0.002. These genotype effects were additive with obesity, and men with a BMI >30 kg/m(2) and this genotype combination had a 10-year risk of diabetes of 19.23 [5.63-63.69], P < 0.0001. Functional promoter variants UCP2 and UCP3 increase the prospective risk of diabetes. Although the mechanism of the UCP2 effect is likely to be caused by increased expression in the pancreas and subsequent reduced insulin secretion, the mechanism of the UCP3 effect is currently unknown. Both effects are exacerbated by obesity.
منابع مشابه
The use of a genetic strategy to study the role of modulation of oxidative stress by uncoupling proteins 2 and 3 in the pathogenesis of Type 2 Diabetes
Mitochondrial dysfunction has been implicated in the early pathogenesis of Type 2 Diabetes. The uncoupling proteins 2 and 3 are mitochondrial proteins found in man that have been implicated in protecting mammals from the effects of over-nutrition. Examination of the effect of genetic variation in the UCP2UCP3 genetic cluster has so far been inconclusive. The aim of this thesis was to examine, u...
متن کاملاثر ترکیبی تمرین تناوبی شدید و مکمل روغن بذر کتان بر محافظت قلبی: به واسطه بیان ژنهای UCP2، UCP3 و eNOS
Background and purpose: Creating cardiovascular protection with proper exercise and nutrition are important issues. The aim of this study was to investigate the combined effects of high intensity interval training (HIIT) and flaxseed oil supplement on the expression of genes involved in cardiac protection (UCP2, UCP3 and eNOS) in healthy male rats. Materials and methods: Twenty adult wistar ra...
متن کاملGenetic Variants in the UCP2-UCP3 Gene Cluster and Risk of Diabetes Mellitus in the Women’s Health Initiative Observational Study
Objective: The mitochondrial uncoupling proteins (UCPs) are involved in body weight regulation and glucose homeostasis. Genetic variants in the UCP2-UCP3 gene cluster, located on chromosome 11q13, may play a significant role in the development of type 2 diabetes (T2D). Research Design And Methods: We conducted a comprehensive assessment of common single nucleotide polymorphisms (SNPs) at the 70...
متن کاملUncoupling proteins, dietary fat and the metabolic syndrome
There has been intense interest in defining the functions of UCP2 and UCP3 during the nine years since the cloning of these UCP1 homologues. Current data suggest that both UCP2 and UCP3 proteins share some features with UCP1, such as the ability to reduce mitochondrial membrane potential, but they also have distinctly different physiological roles. Human genetic studies consistently demonstrate...
متن کاملGenetic Variance in Uncoupling Protein 2 in Relation to Obesity, Type 2 Diabetes, and Related Metabolic Traits: Focus on the Functional −866G>A Promoter Variant (rs659366)
Uncoupling proteins (UCPs) are mitochondrial proteins able to dissipate the proton gradient of the inner mitochondrial membrane when activated. This decreases ATP-generation through oxidation of fuels and may theoretically decrease energy expenditure leading to obesity. Evidence from Ucp((-/-)) mice revealed a role of UCP2 in the pancreatic β-cell, because β-cells without UCP2 had increased glu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Diabetes
دوره 55 5 شماره
صفحات -
تاریخ انتشار 2006